排队论
排队论(queueing theory), 或称随机服务系统理论, 是数学运筹学的分支学科。它是研究服务系统中排队现象随机规律的学科。广泛应用于计算机网络, 生产, 运输, 库存等各项资源共享的随机服务系统。 排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。
排队论起源于20世纪初的电话通话。1909—1920年丹麦数学家、电气工程师爱尔朗(A.K.Erlang)用概率论方法研究电话通话问题,从而开创了这门应用数学学科,并为这门学科建立许多基本原则。20世纪30年代中期,当费勒(W.Feller)引进了生灭过程时,排队论才被数学界承认为一门重要的学科。在第二次世界大战期间和第二次世界大战以后,排队论在运筹学这个新领域中变成了一个重要的内容。20世纪50年代初,堪道尔(D.G.Kendall)对排队论作了系统的研究,他用嵌入马尔柯夫(A.A.Markov)链方法研究排队论,使排队论得到了进一步的发展。是他首先(1951年)用3个字母组成的符号A/B/C表示排队系统。其中A表示顾客到达时间分布,B表示服务时间的分布,C表示服务机构中的服务台的个数。
1、排队模型的表示
X/Y/Z/A/B/C
X—顾客相继到达的间隔时间的分布;
Y—服务时间的分布;
M—负指数分布、D—确定型、Ek —k阶爱尔朗分布。
Z—服务台个数;
A—系统容量限制(默认为∞);
B—顾客源数目(默认为∞);
C—服务规则 (默认为先到先服务FCFS)。
2、排队系统的衡量指标
队长Ls—系统中的顾客总数;
排队长Lq—队列中的顾客数;
逗留时间Ws—顾客在系统中的停留时间;
等待时间Wq—顾客在队列中的等待时间;
忙期—服务机构两次空闲的时间间隔;
服务强度ρ
稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。
3、到达间隔时间与服务时间的分布
泊松分布
负指数分布
爱尔朗分布
统计数据的分布判断 |